
Linear and nonlinear methods for model reduction

Diane Guignard

Joint work:
A. Bonito, R. DeVore, P. Jantsch, and G. Petrova (TAMU)

A. Cohen (Sorbonne Université)
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Introduction

Many real world applications lead to models with a large number of input
parameters, such as weather forecast, optimal engineering design or option pricing.

Goal
Fast and efficient numerical approximation of a high-dimensional function

u : Y ⊂ Rd → V

with d � 1 (possibly infinite) and V a Banach space.

Typical example: u is the solution of some parametric/random PDE

Input Parameter PDE Solution

y ∈ Y ⊂ Rd −→ P(u, y) = 0 −→ u(y) ∈ V .
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Introduction II

Approximation: for y ∈ Y

u(y) ∈ V ≈ un(y) ∈ Vn.

Types of approximation:

Linear: Vn is a linear space of dimension n, for instance
I reduced basis space;

I (Taylor) polynomial space.

Nonlinear: Vn is a nonlinear space depending on n parameters, for instance
I best n-term approximation from a dictionary;

I some adaptive approximations.

Error: the space V is endowed with some norm ‖ · ‖V and the approximation error
for u(y) ∈ V is

inf
vn∈Vn

‖u(y)− vn‖V .
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Performance of a reduced model
Usually, we are not interested in a good approximation of u(y) for one fixed y
but for a certain model class K.

In the parametric PDE setting: we consider the solution manifold

M := {u(y) : y ∈ Y }

and the goal is to built Vn that minimize the worst error

sup
v∈M

inf
vn∈Vn

‖v − vn‖V .

Optimality: the best performance achievable by a linear reduced model is given
by the Kolmogorov n-width

For any compact set K ⊂ V

dn(K ) := inf
dim(Vn)=n

sup
v∈K

inf
vn∈Vn

‖v − vn‖V .

Nonlinear methods can performed better and widths for nonlinear reduced
model can be defined in different ways.
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Setting

To get results that are immune to the so-called curse of dimensionality, we
consider the case d =∞ and we set Y := [−1, 1]N.

We write F the set of all finitely supported sequences ν = (ν1, ν2, . . .) with
νj ∈ N0 := N ∪ {0}.

We consider Taylor polynomial approximations: given a finite subset
Λ ⊂ F

u(y) ≈
∑
ν∈Λ

tνy
ν ,

for some tν ∈ V and yν :=
∏

j≥1 y
νj
j .

We restrict ourselves to lower sets (or downward closed sets), namely sets
for which

ν ∈ Λ and µ ≤ ν =⇒ µ ∈ Λ.
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Goal

The design and analysis of (near) optimal linear reduced models is well developed
in the framework of parametric PDEs, see for instance

Polynomial basis: [Beck-Nobile-Tamellini-Tempone, 2012],
[Chkifa-Cohen-DeVore-Schwab, 2013], [Tran-Webster-Zhang, 2017],
[Bachmayr-Cohen-Migliorati, 2017].

Reduced basis: [Maday-Patera-Turinici, 2002], [Rozza-Huynh-Patera,, 2008],
[DeVore-Petrova-Wojtaszczyk, 2013].

The goal here is to:

move away from the PDE setting (obtain approximation results without using
the PDE theory);

obtain sharp error estimates for all n (not only for n sufficiently large).
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Class of anisotropic analytic functions

Norm: we want to approximate Banach space valued functions u : Y → V in the
norm

‖u‖L∞(Y ,V ) := sup
y∈Y
‖u(y)‖V .

Sequence: let ρ = (ρj)j≥1 be a non-decreasing sequence with ρ1 > 1 and
limj→∞ ρj =∞.

Model class: for any 0 < p ≤ ∞, let Bρ,p be the set of all u ∈ L∞(Y ,V ) which
can be represented uniquely by

u(y) =
∑
ν∈F

tνy
ν

with uniform and unconditional convergence on Y , and such that

‖u‖Bρ,p :=

(∑
ν∈F

[ρν‖tν‖V ]p

)1/p

<∞.
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Measure of performance for Bρ,p

We approximate u ∈ Bρ,p using Taylor polynomials: given a finite set Λ ⊂ F

u(y) ≈
∑
ν∈Λ

tνy
ν , tν := tν(u) :=

∂νu(0)

ν!
.

For a model class K of functions in L∞(Y ,V ), the performance of a lower set Λn

of cardinality n is controlled by

en(K ) := inf
#Λ≤n

sup
u∈K

sup
y∈Y
‖u(y)−

∑
ν∈Λ

tνy
ν‖V .

Given the model class K = Bρ,p (or its unit ball), what can we say about

the decay rate of en(K ) as n increases;

the sharpness of the error bounds;

the construction of a (near) optimal lower set Λ of cardinality n?
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Approximation of functions in Bρ,p
Let (δn)n≥1 := (δn(ρ))n≥1 be a decreasing rearrangement of (ρ−ν)ν∈F and let

Λn := Λn,ρ := {ν ∈ F corresponding to the n largest ρ−ν},

where ties are handled arbitrarily but so that Λn is a lower set of cardinality n.

Theorem

Let 1 ≤ p ≤ ∞ and let p′ be the conjugate of p. Then for all u ∈ Bρ,p we have

sup
y∈Y
‖u(y)−

∑
ν∈Λn

tνy
ν‖V ≤ ‖u‖Bρ,p


(∑

k>n δ
p′

k

) 1
p′

if 1 ≤ p′ <∞
δn+1 if p′ =∞.

Moreover, the set Λn is optimal in the sense that it minimizes the surrogate error

sup
u∈Bρ,p

∑
ν /∈Λ

‖tν‖V

among all lower set Λ with #Λ = n.
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The sequence δn(ρ)
From the previous results, the approximation error is controlled by the sequence

(δn)n≥1 = (δn(ρ))n≥1,

where δn is the nth largest ρ−ν .

In order to compute δn or its decay as n increases, we study #Λ(ε, ρ), where

Λ(ε, ρ) := {ν ∈ F : ρ−ν ≥ ε} = {ν ∈ F : ρν ≤ ε−1}.

Properties:

#Λ(ε, ρ) <∞ whenever ε > 0;

Λ(ε, ρ) is a lower set since µ ≤ ν ⇒ ρ−ν ≤ ρ−µ;

Λ(ε, ρ) ⊂ Λ(ε′, ρ) whenever ε′ ≤ ε;

Λ(δn, ρ) ≥ n

Remark: as a function of ε, #Λ(ε, ρ) is a piecewise constant function and
(δn(ρ))n≥1 is the decreasing sequence of the breakpoints ε1, ε2, . . . of #Λ(ε, ρ).

Diane Guignard (TAMU) ICERM February 17, 2020 11 / 35



#Λ(ε, ρ) as lattice points in a simplex

There is a D = D(ε) such that ρ−1
j < ε for j > D and thus any ν ∈ Λ(ε, ρ) has

support in {1, 2, . . . ,D}.

ρ−ν ≥ ε ⇐⇒
D∑
j=1

νj
ln ρj

ln ε−1︸ ︷︷ ︸
≤1

≤ 1.

Hence, ν ∈ Λ(ε, ρ) if and only if ν is an integer lattice point in a simplex.

Estimating the number of lattice
points in such a simplex is a classical
problem in number theory and
combinatorics.

Existing bounds are only asymptotic
and not sharp for sets of
small/moderate cardinality.
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Specific sequences: polynomial growth
We can achieve better results for sequences ρ := ρ(s), s > 0, of the form

ρj(s) := (j + 1)s , j ≥ 1,

or the slightly modified sequence ρ∗ = ρ∗(s) defined by

ρ∗j := 2ks

for j ∈ Ik , where I1 := {1, 2} and Ik := {j : 2k−1 < j ≤ 2k}, k ≥ 2.

1 200 400 600 800 1000 1200
n

10-8

10-6

10-4

10-2

100

n

1 200 400 600 800 1000 1200
n

10-8

10-6

10-4

10-2

100

n

*

Diane Guignard (TAMU) ICERM February 17, 2020 13 / 35



Estimation of #Λ(ε, ρ): exact count
Counting lattice point in the simplex described by the sequence ρ(s) is
directly related to counting the number of multiplicative partitions of
integers [Canfield-Erdös-Pomerance, 1983],[Cohen-DeVore, 2015].

Exact counts are known only for some values of n and the computation is
very intensive.

For the modified sequence ρ∗(s), the count is related to additive partitions
of integers, which are easier to compute numerically.

Theorem

#Λ(2−ms , ρ∗(s)) = 1 +
m∑

k=1

∑
(N1,...,Nk )∈Qk

k∏
j=1

(
Nj − 1 + #Ij

Nj

)
,

where

Qk := {(N1, . . . ,Nk) ∈ Nk
0 :

k∑
j=1

jNj = k}

There is a one-to-one correspondance between the elements of Qk and additive
partitions of k.
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Estimation of #Λ(ε, ρ): upper bound

Theorem

For m = 0, #Λ(2−ms , ρ∗(s)) = 1, when m = 1, #Λ(2−ms , ρ∗(s)) = 3, and

#Λ(2−ms , ρ∗(s)) ≤

{
2m+4

√
m, 2 ≤ m ≤ 5,

Cm−3/42m+c
√
m, m ≥ 6.

where C ≈ 6.3 and c ≈ 4.

Comparison of the upper bound and the exact count (case s = 1)

0 10 20 30 40 50
m

100

105

1010

1015

1020

1025

#
(2

-m
, 

*(
1)

)
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Estimation of #Λ(ε, ρ): upper bound

Theorem

For m = 0, #Λ(2−ms , ρ∗(s)) = 1, when m = 1, #Λ(2−ms , ρ∗(s)) = 3, and

#Λ(2−ms , ρ∗(s)) ≤

{
2m+4

√
m, 2 ≤ m ≤ 5,

Cm−3/42m+c
√
m, m ≥ 6.

where C ≈ 6.3 and c ≈ 4.

Corollary

We have δn(ρ∗(s)) ≤ 2−6sn
4s
√

4+log2 n

log2 n n−s and thus

sup
y∈Y
‖u(y)−

∑
ν∈Λn

tνy
ν‖ ≤ ‖u‖Bρ∗,1 2−6sn

4s
√

4+log2 n

log2 n n−s

for any u ∈ Bρ∗,1 (and similarly for 1 < p ≤ ∞).
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Motivational example

For R > 1, consider the rational function

f (y) =
1

R − y
, y ∈ [−1, 1].

Using a truncated Taylor series about y = 0, the required number of terms n
(degree n − 1) to achieve a prescribed accuracy ε is

ε n
10−3 19
10−4 25
10−5 31

ε n
10−3 97
10−4 121
10−5 145

R = 1.5 R = 1.1
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Motivational example II

We can achieve the same accuracy with fewer terms if we use piecewise Taylor
polynomials. Idea:

Partition the interval [−1, 1] into subintervals [yi , yi+1], i = 1, . . . ,N.

Use a truncated Taylor series about y = yi+yi+1

2 with m < n terms.

-1 0 1

R=1.5

R=1.1

 = 10
-3

, m=4

-1 0 1

R=1.5

R=1.1

 = 10
-5

, m=4
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Motivation example III

Comparison of the required number of terms: n versus Nm.

ε n
10−3 19
10−4 25
10−5 31

ε n
10−3 97
10−4 121
10−5 145

ε \m 4 5 6
10−3 5 4 3
10−4 9 6 4
10−5 15 9 6

ε \m 4 5 6
10−3 11 8 6
10−4 20 12 9
10−5 35 19 13

R = 1.5 R = 1.1
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Nonlinear reduced model

In some cases, the use of a linear space Vn is not possible (e.g. slow error decay,
small target accuracy, data assimilation framework).

Often, linear methods are outperformed by numerical methods based on nonlinear
approximations.

Library approximation

The idea is to replace the space Vn by a collection of spaces (aka library)

Lm,N := {V 1, . . . ,V N}

with dim(V j) ≤ m < n for j = 1, . . . ,N.

This idea is not new, see for instance

[Eftang-Patera-Rønquist, 2010]

[Maday-Stamm, 2013]

[Zou-Kouri-Aquino,2019],

but to our knowledge, there is no unified study of nonlinear model reduction.
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Parametric PDE
Let D ⊂ Rd be a bounded Lipschitz domain, f ∈ L2(D), and Y = [−1, 1]N the
parameter space.

Elliptic diffusion model problem

Find u : D × Y → R such that{
−div(a(x , y)∇u(x , y)) = f (x) x ∈ D, y ∈ Y

u(x , y) = 0 x ∈ ∂D, y ∈ Y ,

where the diffusion coefficient a has the affine form

a(x , y) = ā(x) +
∑
j≥1

yjψj(x)

and satisfies the uniform ellipticity assumption

0 < amin ≤ a(x , y) ≤ amax <∞.

Then, for every y ∈ Y , there exists a unique solution u(y) ∈ V := H1
0 (D).
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Diffusion coefficient

The uniform ellipticity assumption is equivalent to∥∥∥∥
∑

j≥1 |ψj |
ā

∥∥∥∥
L∞(D)

< 1.

To prove results on polynomial approximation for u(y), we need further
assumptions on the diffusion coefficient.

Here we assume that there exists a non-decreasing sequence (ρj)j≥1 with
ρ1 ≥ κ > 1 and (ρ−1

j )j≥1 ∈ `q(N) such that

δ :=

∥∥∥∥
∑

j≥1 ρj |ψj |
ā

∥∥∥∥
L∞(D)

< 1.

Remark: with these assumptions, u ∈ Bρ,2 (see [Bachmayr-Cohen-Migliorati, 2017]).
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Model class and nonlinear width

Model class: here, the model class is the solution manifold

M = {u(y) : y ∈ Y } ⊂ V .

Nonlinear width: for library approximations, as suitable choice (due to Temlyakov)
is the library width

dm,N(M) := inf
L

sup
y∈Y

inf
Vj∈L

inf
vm∈Vj

‖u(y)− vm‖V

where the infimum is taken over all libraries with N spaces of dimension m.

The two extreme cases are

N = 1: linear width, dm,1(M) = dm(M), might need m >> 1

m = 1: entropy, d1,2n = εn(M), might need N >> 1.

Can we get a better model using an intermediate value for m?
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Construction of a library: general idea

Piecewise Taylor polynomials

As in the motivational example, the idea is to partition the parameter domain

Y = ∪Ni=1Qi

and use a local Taylor polynomial with m terms on each Qi

u(y) ≈
∑
ν∈Λm

∂νu(ȳ i )

ν!
(y − ȳ i )ν , y ∈ Qi .

Typical questions: for a fixed accuracy ε and a fixed number of terms m

How large N needs to be?

How to construct the partition?
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Type of partition

For simplicity (mathematics and practical), we consider rectangular subdomains of
the form

Q := Qλ(ȳ) := {y ∈ Y : |yj − ȳj | ≤ λj , j ≥ 1} ⊂ Y

with center ȳ ∈ Y and half side-lengths (λj)j≥1.

Main idea
Control the error by making the side-length
of the rectangles sufficiently small.

This requires a local error estimate.
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Global error estimate

Following [Bachmayr-Cohen-Migliorati, 2017] we can derive the error estimate

Theorem
For each m ≥ 1, there exists a set Λm with #Λm = m such that

Em(Y ) := sup
y∈Y
‖u(y)−

∑
ν∈Λm

tνy
ν‖V ≤ C‖(ρ−1

j )j≥1‖`qm−r , r =
1

q
− 1

2
,

for some constant C = C (δ, ρ, q).

Important remark: we can take

Λm := {ν ∈ F corresponding to the m largest ρ−ν}

to be a lower set and it can be computed a priori (only requires the sequence ρ).
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Local error estimate

For the error on a subdomain Q = Qλ(ȳ), we use a scaling - shifting argument to
get

Corollary

If for j ≥ 1

ρ̃j :=
ρj − |ȳj |
λj

≥ κ > 1 and ‖(ρ̃−1
j )‖`q ≤ ‖(ρ−1

j )‖`q

then for each m ≥ 1, there exists a polynomial Pm with m terms such that

Em(Q) := sup
y∈Q
‖u(y)− Pm(y)‖V ≤ C‖(ρ̃−1

j )j≥1‖`qm−r , r =
1

q
− 1

2
.

Sufficient condition to have Em(Q) ≤ ε:

C‖(ρ̃−1
j )‖`qm−r ≤ ε ⇐⇒

∑
j≥1

ρ̃−qj ≤ C−qmrqεq =: η.

Diane Guignard (TAMU) ICERM February 17, 2020 26 / 35



Upper bound on the size of the library

Theorem
Given ε > 0 and m ≥ 1, let J be the smallest integer satisfying∑

j≥J+1

ρ−qj ≤ 1

2
η, and let σq :=

1

2J
η.

Then there exists a partition of Y into

N := N(ε,m) ≤
J∏

j=1

[
σ−1| ln(1− ρ−1

j )|+ 1
]

hyperrectangles (Qi )
N
i=1 such that Em(Qi ) ≤ ε for i = 1, . . . ,N.

Key points:

Upper bound on the number of spaces.

Explicit construction of the partition in the proof (tensor-based).
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Sketch of the proof

The directions j > J are not partitioned (i.e., ȳj = 0 and λj = 1).

For a given center ȳ , accuracy ε is reached using m terms if

J∑
j=1

ρ̃−qj ≤ 1

2
η, ρ̃j =

ρj − |ȳj |
λj

.

A sufficient condition is to choose λj such that ρ̃−qj = 1
2J η.

Using this criteria and proceeding as in the motivational example, each
direction j = 1, . . . , J is partitioned into nj subdomains.

The collection of centers are points on a tensor product grid of the first J
coordinates.

The total number of cells is

N =
J∏

j=1

nj .
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Specific sequence: polynomial growth
Consider the sequence

ρj = Mj s , j ≥ 1,

where M > 1 and for which (ρ−1
j )j≥1 ∈ `q(N) for any q > 1/s.

The bound on the required number of subdomains N reads

N(ε,m) ≤ 2c(εmr )
q

1−qs
= 2c̃( n

m )
qr

qs−1
, r =

1

q
− 1

2

with n the number of terms needed to get accuracy ε with one cell.

Remarks:

case m = 1: this bound is consistent with Carl’s inequality [Pisier, 1989];

improvement compared to previous bounds of the form 2c(n−m).
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Numerical example: characteristic function

Setup:

Physical domain: D = (0, 1)2.

Forcing term: f = 1.

Diffusion coefficient (piecewise constant): for a partition of D into square
cells Dj

a(x , y) := 1 +
64∑
j=1

yjcjχDj (x), cj := (1− amin)j−s , j = 1, . . . , 64,

for s ∈ {2, 4} and amin ∈ {0.1, 0.05, 0.01}.
Sequence:

ρj =
1− amin

2

1− amin
j s

yielding δ = 1− amin

2 .

Remark: the smaller amin the closer the coercivity constant to zero.
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Numerical example: one cell

Selection of the lower set Λn:

a priori (largest ρ−ν);

adaptive (iteratively select the largest ‖tν‖V in the reduced margin).

0 200 400 600 800
n

10-4

10-3

10-2

10-1

er
ro

r

 = 0.0001

A priori -

Adaptive |t |

0 20 40 60 80 100 120
n

10-4

10-3

10-2

10-1

er
ro

r

 = 0.0001

A priori -

Adaptive |t |

s = 2 and amin = 0.1 s = 4 and amin = 0.1
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Numerical example: multi cells

Number of terms m needed to achieve accuracy ε = 10−4 for a given partition
with N cells.

amin = 0.1 amin = 0.05 amin = 0.01
# of cells s = 2 s = 4 s = 2 s = 4 s = 2 s = 4
N = 1 102 61 185 128 666 603
N = 4 26 8 30 12 45 22
N = 14 22 5 24 5 29 7
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Numerical example: data assimilation

For some unknown state u(y∗), we are given the data

wj = `j(u(y∗)), j = 1, . . . , L,

where the `j are linear functionals defined on V .

Measurement space: W = span{ωj : j = 1, . . . , L} assumed to be of dimension
L, where ωj is the Riesz representant of `j .

Approximation: ûn ≈ u(y∗) obtained by solving a least squares fit to the data
from Vn [Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk, 2011].

Performance:
‖u(y∗)− ûn‖V ≤ µ(W ,Vn)εn,

where εn := dist(M,Vn) and the inf-sup constant µ(W ,Vn) ≥ 1 can be view as
the reciprocal of the angle between Vn and the space W .

Key observation: εn decreases as n increases while µ(W ,Vn) increases as n
increases and is ∞ if n > L.
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Numerical example: data assimilation

Setup:

L = 20 measurements that emulate point evaluation in D;

s = 4 and amin = 0.1.

One cell

n µ(W ,Vn) µ(W ,Vn)εn ‖u(y∗)− ûn‖V
5 2.30600× 102 3.81786× 100 4.33473× 10−2

10 5.66581× 109 5.82909× 106 1.83385× 104

15 7.07247× 1011 1.43338× 108 6.68910× 105
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Numerical example: data assimilation
Setup:

L = 20 measurements that emulate point evaluation in D;

s = 4 and amin = 0.1.

Multi-cell: N = 14 and m = 5 which ensures accuracy εm ≤ 10−4 on each cell.

-1 -0.5 0 0.5 1
cells

10.5

11

11.5

12

-1 -0.5 0 0.5 1
cells

1.05

1.1

1.15

1.2

10-3

µ(W ,V j) µ(W ,V j)εm
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Concluding remarks

Linear reduced model:

Approximation by Taylor polynomials described via lower sets.

Sharp error bound for approximation of general multivariate anisotropic
functions (model class Bρ,p) and for all values of n.

A priori construction of an optimal lower set (in the surrogate norm).

Exact count of lattice points in the simplex described by a sequence with
algebraic growth (ρ∗(s)).

Nonlinear reduced model:

Library approximations provide an alternative when standard linear reduced
models fail to give satisfactory results.

Step towards a more cohesive theory for nonlinear model reduction.

Derivation of an upper bound on the size of the library, based on piecewise
Taylor approximation with fixed number of terms, and design of an explicit
partition of the parameter domain.
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